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ABSTRACT

Geographic information is commonly derived from
remote sensor imagery. The images are digitized and seg-
mented into categories of interest, such as terrain or
land use types. The regions resulting from this segmen-
tation process can then be individually labelled, using
connected component analysis or refinements of it.
Polygonal boundary chains can be constructed for each of
these regions, and the topological relationships among
the regions can also be extracted.

This paper describes efficient algorithms for image
segmentation into regions, region labelling, and construc-
tion of polygonal representations of regions. Such al-
gorithms can serve as an interface between digital image
data bases and polygon-based geographic information sys-
tems.

The support of the Directorate of Mathematical and Infor-
mation Sciences, U. S. Air Force Office of Scientific Re-
search, under Grant AFOSR-77-3271, is gratefully acknow-
ledged, as is the help of Mrs. Shelly Rowe in preparing
this paper. This paper is to be presented at the Advanced
Study Symposium on Topological Data Structures for Geo-
graphic Information Systems, Dedham, MA, October 1977.
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EXTRACTION OF TOPOLOGICAL INFORMATION FROM DIGITAL IMAGES

1ie INTRODUCTION

This paper reviews techniques for extracting regions
and region descriptions from digital images. A digital
image is an array or matrix whose elements represent the
reflectivities of points in the terrain (or in whatever type
of scene gave rise to the image). In the case of
multispectral imagery, each "multi-image" element is a
vector whose components represent reflectivities of the same
point in various spectral bands. To extract region-based
information from an image, the following steps are generally

necessary:

a) Segmentation of the image into subsets having

different characteristics.

b) Decomposition of each subset into connected

components, and determination of the topological
relations (adjacency, surroundedness) between the
components.

c) Representation of the individual components, e.g.,
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by boundary chains or other types of polygons.

With each region (= connected component) can then be
associated various types of descriptive information,
relating to its spectral and textural content, to its size

and shape, and so on.

The following sections of this paper will deal,
respectively, with algorithms for image segmentation,
connected component decomposition, and boundary
representation of the components. We will use the following
notation and terminology: The elements of an image will be

called points or pixels; a pixel will be identified by its

position (x,y). The value of a pixel will be called its

be denoted by f(x,y). For a pixel in a

gray level, and will

multi-image, we have a k-tuple of values (fl(x,y),...,

fk(x,y)), called the spectral signature of the pixel at

(X,y) .

Zs SEGMENTATION

When we segment an image into subsets of different
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types, we are classifying the
different classes. The basis
is (in general) provided by a
that we measure at the point;

by particular combinations of

of basic segmentation methods
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pixels of the image into

for classifying a given point
collection of property values
the subsets are characterized
A brief review

these values.

will now be given; further
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information can be found in Chapter 8 of [3].

2.1 Gray Level Thresholding

If an image consists of light regions on a dark
background or vice versa (e.g., clouds against sea surface,
or water against land), we can classify its pixels into

"light" and "dark" classes by simple thresholding. 1In other

words, the gray level f(x,y) at each point (x,y) is compared
to a threshold t, and is classified according to whether

E(x,¥) = t or < t.

If we know the statistics of the light and dark classes
(e.g., that they have Gaussian distributions with given
means and standard deviations), then we can determine
mathematically where to put the threshold t in order to
discriminate the classes with minimum error. If the class
statistics are not known, we can decide where to put t by
analyzing the clustering behavior of the image gray levels.
In particular, suppose that we plot how many times each gray
level occurs in the image; this plot is called the gray
level histogram of the image. If this histogram has two
peaks separated by a valley, then the peaks represent the
light and dark regions, and they can be best distinguished
by putting the threshold t at the gray level corresponding

to the bottom of the valley.
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2.2 Spectral Classification

Just as we can segment an ordinary image into sets of
light and dark pixels based on the single property of gray
level at each pixel, so we can segment a multi-image into
subsets having given spectral characteristics, using the
spectral signature of each pixel as a collection of property
values. This is commonly done in analyzing multispectral
remote sensor imagery; the subsets or classes may

correspond to land use types, crop types, and so on.

We can think of the spectral signature (fl(x,y),...,
fk(x,y)) of the pixel at (x,y) as defining a point in a k-
dimensional space. Thus to classify the pixel, we can
divide the space into regions, such that the class to which
a pixel is assigned is determined by the region into which
its k-dimensional point falls. For example, a k-dimensional
hyperplane, that divides the space into two half-spaces, is

defined by an equation of the form

alzl+---*akzk = ¢

The pixel whose signature is (fl(x,y),...,fk(x,yn falls into

one or the other of these half-spaces according to whether
alfl(x,y)+---+akfk(x,y) 2 tor < t

Here again, if we know the statistics of the spectral

signatures for the pixels belonging to each class, e.g.,
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that they have multivariate Guassian distributions with
given mean vectors and covariance matrices, we can in
principle determine mathematically how the space should be
partitioned in order to minimize the classification error.
If the statistics are not known, we must decide how to
partition the space by analyzing the clustering behavior of
the pixel spectral signatures. For example, if these
signatures form two compact, well-separated clusters in the
space, we can conclude that there are two natural classes of
pixels present in the image, and we can discriminate these
classes by partitioning the space, say with a hyperplane, so
that each cluster lies in a different part of the space.
Evidently, this process is exactly analogous to that of gray
level threshold selection; a threshold is simply a point
that partitions a one-dimensional space (defined by the

simple property of gray level) into two half-spaces.

2.3 Texture Discrimination

In order to segment an image into differently textured
regions, it is necessary to make use of pixel properties
whose values depend not only on the gray level of the pixel
itself, but also on the gray levels of nearby pixels. We

can illustrate this by the following simple examples.

Suppose that the image conatains two types of regions
composed of small dark elements on a light background, but

that in one type of region the elements are densely packed,




while in the other type they are sparsely scattered. We
cannot distinguish these types of regions by thresholding,
since this can only discriminate the elements from the
background, but cannot respond to differences in element
density. However, we can make the regions discriminable by
the simple device of blurring the image, i.e., replacing the
gray level of each point by the average gray level computed
over some neighborhood of that point. (We ignore here what
happens at the edges of the image.) Under this process, the
y packed regions become generally dark, and the sparse
light, and it is then possible to discriminate the

ions by thresholding, as in Section 2.1.

As another example, suppose that one type of region is
"pbusier" than the other -- e.g., that one type contains
small, densely packed dark elements, while the other
contains larger, less densely packed elements. Thus in the
first type of region, transitions from light to dark are
very frequent, while in the second type, they are rarer.
Here again, we cannot discriminate the regions by
thresholding, since this only distinguishes the elements
from the background; nor can we be sure of doing it by
averaging and thresholding, since the average gray level in
both types of regions may be essentially the same. However,
we can distinguish the regions by noting that the first type
contains many more light/dark adjacencies than the second.

Thus we can compute a measure of gray level difference at




each point of the image (see Section 2.4), obtaining a new
array in which high values are more frequent in the first
type of region than in the second. This new array can then
be segmented by averaging and thresholding, as in the

preceding paragraph.

These two examples are representative of a large class
of cases in which two types of regions differ with respect

to the average value of some local property. (In the first

case, the property is simply gray level; in the second case,
it is gray level difference.) In such cases, the regions
can be discriminated, in principle, by a three-step process
of (a) computing the local property at each point; (b)
averaging the results over a neighborhood of each point; and
(c) thresholding the resulting array of average local
property values. A wide variety of textural differences
among regions can be discriminated in this way. Note that
in all these cases we are still classifying image points on
the basis of property measurements, though the property
value at a point now depends on the gray levels in a

neighborhood of the point.

2.4 Edge Detection and Template Matching

Segmentation need not involve discriminating among
different types of regions in an image; it may instead
involve detecting specific types of local patterns in the

image. For example, one may want to distinguish edge points
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(i.e., points where the rate of change of gray level is
high) from non-edge points, or points where some template
closely matches the image from points where it does not
match. Here again, we are classifying points based on the
value of a local property -- the value of the gray level
difference, or the degree of match with the template; in
fact, we are thresholding the difference or match value in
order to decide whether or not an edge or pattern is

present.

Local pattern detection is important in a variety of
image analysis applications. Examples are the detection of
region boundaries (e.g., coastlines) or curve-like features
(roads, rivers, lineaments, etc.) on remote sensor imagery;
this is done using local patterns corresponding to short
line segments having a range of orientations. A variety of
match measures can be used for local pattern detection; the
details will not be discussed here. Similarly, a variety of

difference operators can be used for edge detection.

2,5 Sequential Methods of Segmentation

In all of the segmentation technigues discussed up to
now, the image pixels are classified independently of one
another; in other words, the decision made about one point
does not depend on decisions about other points -- though it
may depend on the gray levels of such points. These methods

are often called "parallel", because the classification




process could, if desired, be carried out for all pixels

simultaneously.

Another class of segmentation methods are known as
sequential, because they do take advantage of previous
decisions when classifying each pixel. A standard example

of this approach is curve tracking, in which, once a curve

is detected at a point, we examine the neighbors of that
point, and decide which of these neighbors continues the
curve; then repeat the process for these ne:ghbors; and so
on. Here we are still classifying points based on property
values (e.g., degree of match with a line-segment template) ;
but the choice of property (e.g., slope of the template) and
decision criterion (degree of match required for acceptance
of a point) can now depend on results of previous decisions
(e.g., in which direction the curve was headed, and how high
its contrast was). The sequence in which points are
examined also depends, of course, on the results found at

previously examined points.

A more general example of sequential segmentation is

region growing. Here we start with a single pixel, or with

a uniform piece of the image (such as a connected component
of constant gray level; see Section 3), and "grow" a
homogeneous region by successively adding pieces whose
addition does not violate a homogeneity criterion. Thus we

are basically clustering pixels (or collections of them)




based on similarity of property values; the decisions
depend, at least to some degree, on the sequence in which

the clusters are grown.

Sequential methods of segmentation are potentially
more powerful than parallel methods, since they can take
advantage of information obtained at previous steps in
making subsequent decisions. However, they have a potential
disadvantage with respect to computational cost, because
they require the points of the image to be examined in an
arbitrary sequence, or repeatedly. Parallel methods, on the
other hand, can be implemented in a single, systematic scan
through the image, since they can be applied in any desired
order. We have emphasized simple parallel methods in this
brief review, because they are both more generally
applicable and less computationally costly. Of course,
simple methods such as those described here will often not
yield perfect segmentations, but they do provide a starting

point for the development of more specialized methods.

3. CONNECTED COMPONENT EXTRACTION

Once an image has been segmented into subsets, we can
further ahalyze the toplogical properties of these subsets.
In particular, we can break them up into connected
components, and determine the adjacency and surroundness

relationships that hold among these components. Methods for
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carrying out these steps will now be reviewed; for further

details see Chapter 9 of [3], particularly Section 9.1.

3.1 Connected Components

In a digital image, each point (x,y) has four

horizontal and vertical neighbors
(x+1,y), (x,y*l)

and four diagonal neighbors
(x+1,y*1l), (xtl,ysl)

(We ignore the special case of a point on the edge of the
image.) For any points P,Q, a path from P to Q is a

sequence of points
B PyiBypssvyBy =0

such that Pi is a neighbor of Pi—l' l <i < n., Here n is

called the length of the path.

Let S be any subset of the image. We say that the
points P,Q of S are connected in S if there exists a path
from P to Q that consists entirely of points of S. For any

PES,

Sp = {Qes|P and Q are connected in S}

is called a connected component of S. Readily, S is the

union of its connected components, and they are pairwise

11
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disjoint -- in other words, they constitute a partition of

S.

It is important to point out that there are two
versions of the above definitions, depending on whether we
allow as neighbors of a point only its horizontal and
vertical neighbors, or also its diagonal neighbors. If we
do the latter, then the set whose points are indicated by

*'s below

is connected; if not, this set consists of two connected

components, each having a single point.

e Component Labelling

A number of algorithms have been devised for giving
distinctive labels to the distinct connected components of a
given set S. The most efficient of these algorithms, which
we will now describe, requires only two systematic scans
through the image to label all the components. We assume
here that the points of S have been specially marked; for
simplicity, we will refer to these points as 1l's, and to the

points not in S as 0's.

We scan the image row by row. On the first row, we
assign a distinct label to the 1's in each run of 1's. For

example, if the row looks like

12

a———- - e ———

A —— o T



001100010111

and we are using the numbers 2,3,4,... as labels, then the

result of labeling this row is

002200030444

On succeeding rows, we treat each run p of 1's as follows:

a) If p is adjacent to no runs of 1l's on the
preceding row (i.e., no 1 in p is a neighbor of
any 1 on the preceding row), we give its points
the next available label that has not yet been
used.

b) If p is adjacent to one run of 1l's, say p', on the
preceding row, we give its points the same label
that was assigned to the points of p'.

c) If p is adjacent to two or more runs of 1's on the
preceding row, we give its points one of their
labels (say the least one), and we also record the
fact that these labels are all "equivalent", i.e.,
they have been assigned to a single connected

component.

When this scan of the image is complete, each point of
S has a label, and no points belonging to different
connected components have the same label; but it is quite
possible that points belonging to the same connected

component have different labels, whose egquivalence was not

13
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discovered until later in the scan. To eliminate these
superfluous labels, we process the list of recorded
equivalences, and determine, for each label, the smallest
label (say) that is equivalent to it. We can now scan the
image again, and replace each label by its smallest
equivalent label. After this second scan is finished, the

points of each connected component all have the same label.

Variations of this algorithm exist in which we need
examine only very small neighborhoods of each point of S,
rather than examining entire runs of points of S. For
example, let the points to the left of and above point P be

B
Cp

where P is a point of S. Suppose, for concreteness, that we
allow only horizontal and vertical neighbors. Then we can

assign a label to P according to the following rules:

a) If B

C = 0, give P the next available new label.

b) If B=1or C =1, but not both, give P the same
label as B or C.

c) If B=C=1, give P the same label as C (say), and
record the fact (if not already recorded) that the

labels of B and C are equivalent.

This algorithm requires very little processing for each point

P; but during the first scan, it will use many more labels

14
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than the first algorithm. For example, in cases like

* &
* %
* %

the first * on each row will get a new label, since

B = 0 for these *'s.

L

3.3 Component Properties and "Noise Cleaning"

The component labelling algorithm can also provide, as
byproducts, a count of the number of components, and a
measure of the area of (i.e., the number of points in) each
component. In fact, the number of components is just the
number of inequivalent labels that are used, and the area of
a component is just the number of times that its label is
used. Other properties of the components can also readily
be computed, such as their perimeters, heights and widths,
or their moments of various degrees, by keeping incremental
count of various quantities as the components are being
labeled. The details of these refinements will not be

described here.

" I1f the image has been poorly segmented, there may be
many small "noise" components in the set S, or there may
exist narrow gaps that break up components. Noise
components can be eliminated using an area criterion -- i.e.,
discarding any component whose area is smaller than some

threshold. Alternatively, they can be eliminated by a

15

L"‘:v, sk onadinfig T TR W T NG T R T ey - S— R— BT —




"shrinking and reexpanding" process that operates as
follows: Change all 1's to 0's if they have 0's as
neighbors; then change all 0's to 1's if they have 1's as
neighbors. This process first shrinks S by erasing its
border points (= points that have neighbors not in S), then
expands S again by adding a border to it. However, parts of
S that are nowhere more than two points wide will disappear
completely under the shrinking, and so cannot be restored by
the expansion. Note that this process eliminates thin,
elongated parts of S even if they are very long; thus it
should be used only if such parts are regarded as noise.

The shrinking and reexpanding can be done in two scans of
the image; or they can be done in a single scan, if larger
neighborhoods of each point are examined (the details will

not be given here).

Gaps in S can be mended by an expanding and reshrinking
process exactly analogous to the shrinking and reexpanding
process just described. Note that this will fill small
holes and thin concavities, as well as briding thin gaps.
These processes can be generalized to allow repeated
shrinking and/or expanding, in order to eliminate noise

components or gaps that have widths greater than 2.

3.4 Adjacency

Let S and T be disjoint subsets of an image. We say

that S and T are adjacent if some point of S is a neighbor of

16
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some point of T. If an image has been partitioned into
labelled subsets, it is a straightforward matter to
determine which pairs of these subsets are adjacent by
scanning the image and examining the neighborhood of each
labelled point. These adjacency relationships define a
connected graph G whose nodes are the subsets and whose arcs
are adjacencies; we call G the adjacency graph of the given

partition.

An important special case of the adjacency graph arises
when the partition consists of the connected components of a
given set S and of its complement S. 1In this case, it can
be shown that G is a tree. It is straightforward to
determine the adjacency relationships in the process of
scanning the image to label the connected components of S
and of S (both of which can be labelled simultaneously).
Algorithms have also been devised for constructing the tree
G explicitly (e.g., encoded as a string of parentheses) in
a single scan of the image; the details will not be given

here.

It should be pointed out that the conclusions in the
preceding paragraph are valid only if we use opposite types
of connectedness for S and for S -- i.e., if we allow
diagonal neighbors for one of them, but not for the other.
For example, if we do not allow diagonal neighbors for

either, then in the image

17
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we have four connected components, two in S and two in S,

and the adjacency graph is

™
B<::D///£

which is not a tree. Many other topological algorithms
require the same assumption of opposite definitions for S
and § -- for example, the border following algorithm to be

given in Section 4.1.

The adjacency relationship considered in this section
is a very simple one; it does not take into account the
order in which various other sets touch S around its border,
nor the fact that a given set may touch S several times.
More will be said on this topic when we discuss region

borders in Section 4.1.

3.5 Surroundness

Let S and T be disjoint subsets of an image. We say
that T surrounds S if any path from a point of S to the edge
of the picture must pass through T. (In other words: For

all paths P = P Pl""'Pn = Q such that P is in S and Q is

OI
on the edge of the picture, some Pi must be in T,

18
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For a given pair of sets S, T, one can determine
whether or not T surrounds S by constructing a border curve
C of T (see Section 4) and testing whether or not some point
of S is inside C. (The many methods of determining whether
or not a point is inside a polygon will not be reviewed
here.) For an arbitrary partition of an image into sets, it
is tedious to determine all the surroundedness relations,

since many pairs of sets must be examined.

The problem of determining all the surroundedness
relations is greatly simplified in the case where the
partition consists of the connected components of S and of
S. It can be shown that whenever a component U of S and a
component V of S are adjacent, one of them must surround the
other, unless they both touch the edge of the image. (Here
again we must use opposite types of connectedness for S and
S; otherwise, the interior squares of a checkerboard all
touch each other, but do not surround each other, and they
are all components if we do not allow diagonal neighbors in
either S or S.) Let us construct the adjacency tree G for
the components of S and S, as in Section 2.4, and mark all
the nodes of G corresponding to components that touch the
edge of the image. For any two components U and V, let u
and v be the corresponding nodes of G. Since in any tree

there is only one path between any two given nodes, it is

19
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easy to construct the paths from u to each of the marked
nodes. If v is on all of these paths, then V surrounds U,
and conversely. Thus using G greatly simplifies determining
all the surroundedness relations that hold between

components of S and of §S.

4. COMPONENT REPRESENTATION

Let U be a connected set of points in a digital image,
so that U consists of a single connected component.
Although it is connected, U can still have a very complicated
shape, and it may also have many holes -- i.e., there may
be many components of U (the complement of U) that U
surrounds. Thus U does not necessarily have a simple

description.

The standard approach to describing a connected set U
is to specify its border (the points where it is adjacent to
U, or to the edge of the image) by a set of curves. Note
that many curves may be required, since U may have many
holes. 1In this section we describe algorithms for tracking
or "following" the borders of U (along which it meets
various components of U) and constructing these curves. For
simplicity, we will assume that U does not touch the edge of
the image. Further details on the material in this section

can be found in Chapter 9 of [3].

The digital curve that represents a given border of U

20
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is a polygon, defined by sequences of "unit vectors"

corresponding to the steps from point to point around the
border. One can also approximate a (digital) curve by a
polygon, using some error criterion to define how closely

the sides of the polygon must fit the curve. Polygonal

approximation techniques will not be considered further here.

A set U can also be represented in other ways, not
involving 1ts borders. For example, U can be represented by
a "skeleton" consisting of the centers and radii of the
maximal squares (say) that are centered at the points of U
and contained in U. This representation is usually not as
economical as one based on borders, but it has computational
advantages in certain cases (e.g., it facilitates
constructing unions and intersections of sets). Additional
information about skeletons can be found in Chapter 9 of

[3]; they will not be considered further here.

4.1 Border Following

Let U and V be subsets of a digital image. The V-

border of U, denoted Uv' is the set of points of U that
have points of V as neighbors. Even if U and V are both
connected, Uv need not be connected, since V may touch U in

many places.

On the other hand, let U be connected, and let V be a

connected component of U that is adjacent to U; then Uv is

21




a "closed curve" (we will not define this term precisely
here). The same is true if we take S to be any set and let
U be a component of S and V component of S that is adjacent
to U. Once again, in these definitions, we must use
opposite types of connectedness for U and V (i.e., for S and
S). We shall refer to the points of U as 1's and to the

points of V as 0's.

We now describe an algorithm,called BF, for visiting
all the points of Uv in sequence. Suppose, for
concreteness, that we allow diagonal neighbors for U but not
for V. BF assumes that we are initially given a pair of
horizontally or vertically neighboring points u,v with u =1
and v = 0. It first checks that u has some neighbor in U;
if not, U = {u} is a single point, and there is no border
to follow. Otherwise, BF proceeds to construct a sequence
of such point pairs (u,v) = (uo,vo),...,(un,vn) by operating

as follows:

a) Let the neighbors (horizontal, vertical, and
diagonal) of u; in (say) clockwise order starting
i . with Vi be WiiWoreeoiWge
b) Let vy be the first of the w's that lies in U.
(There must be one, since as we shall see, Uiy is
a neighbor of ugi if i = 0, we have already ruled

out the case where u, has no neighbor in U).

0

c) Take L and wj_1 as v, .-

i+l

22
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d) Repeat steps (a-c) until u, is found again (say as
um), provided that vO is one of the w's that are

examined when applying step (b) to u-

If we use diagonal neighbors for V rather than U, we must
modify BF as follows: At step (b), let wj be the first of
the w's that lies in U and is a horizontal or vertical

neighbor of u.. 1If wj_l = 0, take wj as uj; .4 and wj—l as

1

.

as v

vi+l; if wj-l =1, take wj-l as ui+l and wj_2 i+1

Successive u's found by BF are connected to one another
in the U sense, and successive v's are connected to one
another in the V sense. Also, each pair (ui,vi) is a
horizontally or vertically adjacent pair of points, so that
the u's all belong to Uv' and the v's to Vu' The proof that
BF always works is rather difficult, and will not be given
here. BF cannot stop as soon as it encounters U since it

may have to pass through u, twice, if U is thin at u, (e.qg.,

Wiy L=
I***ugtmt ) x

A number of variations on BF are possible. One of them
follows the "cracks" between U and V; here each "crack" is
defined by a pair of points (u,v) in U and V, respectively.
This algorithm finds the same u's as BF, but it may stay at
some of them for several successive steps, as it moves
through a succession of neighboring v's (w's in BF that have

value 0). The details of this and of other algorithms for
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border following will not be given here.

Algorithms like BF will follow the border between U and
any given V. As pointed out earlier, if U has holes, it
will have borders with several different V's. These borders
may have points in common, or one of them may even be
contained in another (e.g., if U is a simple closed curve).
We can use BF to follow all the borders; but some care is
necessary 1in marking the borders that have already been
followed, to insure that borders not yet followed are not
incorrectly excluded from further consideration.
Incidentally, BF follows hole borders (= borders with V's
such that U surrounds V) counterclockwise, and outer borders
clockwise; this is a result of our arbitrary decision to use

a clockwise ordering of the neighbors in step (a).

If the image has been segmented into several types of
regions, and each of these has been labelled distinctively,
then when we follow the borders of U, we can check at each
border point P just which region(s) U is adjacent to at P.
We can thus construct an oriented multigraph representing
the adjacency sequences that occur around each border. The

details of this process will not be considered further here.

4.2 Chain Coding and Object Reconstruction

Since successive u's found by BF are (horizontal,

vertical, or diagonal) neighbors, we can describe the border
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traced by BF as a succession of moves from neighbor to
neighbor. Let us identify the eight neighbors of a point

(*) by numbers 0,1,...,7 as follows:

0w
N * N
~N O -

(mnemonic: The ith neighbor is the one in direction 45i°,
where angles are measured counterclockwise from the positive
Xx-axis). Thus the succession of BF's moves can be
represented by a sequence of 3-bit numbers. Such a sequence
is called a chain code. A review of chain coding can be

found in [1].

If we are given the chain codes of the borders of a set
U, we can reconstruct U (as a set of 1's in a digital
image), provided that we are also given, for each border Uv’
an initial pair of points (u,v) with u in U and v in V. The
reconstruction process is as follows: Mark the points u, v
as 1, 0, respectively. The chain code defines which
neighbor of u = vy is the next border point u; . Taking the

neighbors of u, in clockwise order starting with Voo let vy

0
be the neighbor immediately preceding vy Mark u,,v, as
1,0, respectively; also mark all the neighbors of u, between
Vo and v, as 0. (The diagonal neighbors are marked only if
we are using diagonal neighbors in U; otherwise they are

left blank.) Repeat the process, with (“l'vl) in place of

(uo,vo), and continue in this way until the chain is
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finished, which brings the border back to ug - This process
marks all the points of Uv as 1's, and all the points of Vu

as 0's.

When all of the borders and "coborders" of U have been
marked in this way, we can "fill in" the interior of U
using a row-by-row scan of the image. The filling-in
process is based on the observation that any interior point
of U must belong to a horizontal run of interior points,
having border points at its ends. Thus as we scan row by
row, whenever we find a 1, we change blanks to 1l's as we
move to the right, but stop if we reach a 0. When the scan
is complete, all of U will be marked with 1's. If desired,

we can mark all of U with 0's in the same scan.

4.3 One-Pass Chain Coding

BF extracts borders one at a time, and it also requires
access to the image in an arbitrary sequence, since the
borders are arbitrary curves. In this section we describe
an algorithm for simultaneously constructing the chain codes
of all borders of all objects in the course of a single row-

by-row scan of the image.

The algorithm operates as follows: On the top row of
the image, it creates a chain code of the form 00...0 for

each run of object points; these correspond to the tops

of objects, followed clockwise. On any subsequent row, we
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already have a set of chains (possibly empty) that meet the

preceding row; we assume that we know which end of which run

corresponds to each end of each of these chains.

We now compare the positions of the runs on the current

row (n)

a)

b)

c)

with those on the preceding row (n-1).

If p is a run on row n that is not adjacent to any
run on row n-1, we initiate a new chain for p, just
as we did for each run on the first row.

If p is a run on row n-1 that is not adjacent to any
run on row n, we create a chain of the form
44...4, corresponding to the bottom of the run, and
link it to the chain ends associated with the ends
of the run (i.e., if these chains are ¢ and ),

at the right and left ends of p respectively, we
join them to form k44...4)). These chain

ends have now been joined together and need no
longer be tracked.

If run p on row n-1 is adjacent to rows Ppree-rPy
on row n, we extend p's chain ends to join the left
end of p with the left end of Py and the right end
of p with the right end of Ppe For example, in the

situation

Ahkhkhhhkhkhhh

Kk kk ** plp'pz
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d)

if the chains associated with the left and right
ends of p are k and A, we adjoin 001 to the
beginning of k, and 445 to the end of A. Thus
the beginning of the chain 00l is now associated
with the left end of Py and the end of the chain

A445 with the right end of Py

In addition, we create new chains
corresponding to the border segments at the bottom
of p between successive oi's; these are all of the
form 344...45. For example, in the case
illustrated above, we create the chain 34445, and
associate its beginning with the left end of Por
and its end with the right end of Py-

Similarly, if runs Plres-sP. ON row n-1 are
adjacent to run p on row n, we extend the chains
corresponding to the left end of Py and the right
end of Pr to join them with the left and right ends

of p, respectively. For example, in the situation

* k k& * * B340
khkhkhkkhkkhkk pl 2

if the chains associated withe the left end of Pl
and right end of p, arex and A, respectively,

we adjoin 007 to the beginning of k, and 700 to
the end of A. Thus the beginning of chain 007%

is now associated with the left end of Py and the
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end of chain 1700 with its right end.

In addition, we join up the chains associated
with the remaining ends of ol,...,or, using chain
segments corresponding to the border segments at
the top of p between the pi's; these are all of the
form 700...01. For example, in the case
illustrated above, if uy,v are the chains associated
with the right end of P1 and left end of Py
respectively, we link them to form the chain
u70001v. The end of p and beginning of v have now

been joined together and need no longer be tracked.

When the row by row scan of the image is complete, this
process will have created chain codes of all the object
borders in the image. Of course, we should also save the
locations of a pair of adjacent object and background pcints
at the start of each chain, so that the objects can be
reconstructed from the chains. Note that a final border
chain may be the result of linking together many different
pieces, since the tracking of the border may have begun at
many places; thus we may have saved many point pairs that
turn out to be on the same border, and we can discard the

superfluous ones.

As in Section 4.1, an alternative algorithm for one-

scan border chain code construction can be devised that
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looks only at a small neighborhood of each object point,
rather than at entire runs of object points. The details of
such an algorithm will not be given here; they can be found

¥ [ 2705

One could also devise an algorithm that creates an
image of all the object borders in a single row-by-row scan,
given the chain codes and the initial point pairs. This
would require the chain codes to be stored in pieces,
starting at each locally highest part of each border, and
with an initial point pair for each such part. The use of
such a storage scheme for chain codes should facilitate
k efficient conversion from chain code to digital image form

and vice versa.

e CONCLUDING REMARKS

This paper has described some basic algorithms for
extracting object border descriptions from a digital image.

The image is segmented into subsets, these are analyzed into

connected components, and the closed-curve borders between
pairs of the components are tracked, using either a border-
following or row-by-row process. The reconversion from
object borders to segmented digital image (array of 0's and
1's) was also discussed. Algorithms such as those described
here play a central role in interfacing digital image data

with polygonal region descriptions.
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